## PART № 2

It is two type of non-modular elliptic curves:
(A) Non-modular elliptic curves of the first type

$$
\begin{align*}
& Y=a_{0} \times b_{0} \times C_{0}  \tag{38}\\
& \left(X^{*}-A^{*}\right)=a_{0}{ }^{2} \\
& X^{*}=b_{0}{ }^{2} \\
& \left(X^{*}+B^{*}\right)=c_{0}{ }^{2} \tag{39}
\end{align*}
$$

(B) Non-modular elliptic curves of the second type

$$
\begin{gather*}
Y^{2}=\left(X^{*}-A^{*}\right) \times X^{*} \times\left(X^{*}+B^{*}\right)= \\
={a_{0}}^{2}\left(3 D_{n}\right) \times b_{0}^{2}\left(3 D_{n}\right) \times{c_{0}}^{2}\left(3 D_{n}\right)=  \tag{40}\\
=3 F_{a}^{\prime} \times 3 F_{b}^{\prime} \times 3 F_{c}^{\prime} \\
\left(X^{*}-A^{*}\right)={a_{0}}^{2}\left(3 D_{n}\right)=3 F_{a}^{\prime} \\
X^{*}=b_{0}^{2}\left(3 D_{n}\right)=3 F_{b}^{\prime} \\
\left(X^{*}+B^{*}\right)=c_{0}^{2}\left(3 D_{n}\right)=3 F_{c}^{\prime}  \tag{41}\\
\text { Here number } A^{*}
\end{gather*}
$$

WILL NOT DIVIDE INTO / BY
$16=4 \times\left(b_{0}=2 v u\right)=4 \times\left(b_{0}=2 \times 2 \times 1\right)$
if $v=2$ and $u=1$.
according Fundamental arithmetic theorem
(43)

$$
\begin{gather*}
\text { and } \\
\mathbf{a}_{*}=\sqrt[n]{\mathbf{F}_{a}^{\prime}}=\sqrt[n]{\mathbf{a}_{0}^{2} \times \mathbf{D}_{\mathbf{n}}} \\
\mathbf{b}_{*}=\sqrt[n]{\mathbf{F}_{\mathbf{b}}^{\prime}}=\sqrt[n]{\mathbf{b}_{0}^{2} \times \mathbf{D}_{\mathbf{n}}} \\
\mathbf{C}_{*}=\sqrt[n]{\mathbf{F}_{c}^{\prime}}=\sqrt[n]{\mathbf{C}_{0}^{2} \times \mathbf{D}_{\mathbf{n}}} \\
\text { is roots for equation by Fermat } \\
\mathbf{a}_{*}^{n}+\mathbf{b}_{*}^{n}=\mathbf{c}_{*}^{n} \\
\text { and }  \tag{44}\\
\mathbf{F}_{\mathbf{a}}^{\prime}=\mathbf{a}_{1}^{\prime} \times{\alpha_{1}^{\prime}}^{n}=\mathbf{a}_{2}^{\prime} \times \alpha_{2}^{\prime}=\mathbf{a}_{3}^{\prime} \times \alpha_{3}^{\prime} \\
\mathbf{F}_{\mathbf{b}}^{\prime}=\mathbf{b}_{1}^{\prime} \times \beta_{1}^{\prime}=\mathbf{b}_{2}^{\prime} \times \beta_{2}^{\prime}=\mathbf{b}_{3}^{\prime} \times \beta_{3}^{\prime} \\
\mathbf{F}_{\mathbf{c}}^{\prime}=\mathbf{C}_{1}^{\prime} \times \gamma_{1}^{\prime}=\mathbf{C}_{2}^{\prime} \times \gamma_{2}^{\prime}=\mathbf{C}_{3}^{\prime} \times \gamma_{3}^{\prime}
\end{gather*}
$$

is elements of secondary reduction forms
of the theory numbers by H.Poincare [5], [6], [7], [8], [9], [10], [11].

