V.S.Yarosh

УДК 511, 521.1
PACS numbers:
02.10.Ab
02.30.Xx

SOLUTION SYSTEM EQUATIONS:
 OF NON-MODULAR ELLIPTIC CURVES, H.POINCARE'S, P.FERMAT'S AND A.BEAL'S AS ALTERNATIVE FOR HYPOTHESIS SHIMURA-TANIYAMA AND PROOF OF A.WILES

Table of contents
1.Introduction.
2.Paradigm.
3.Part № 1.

Non-modular elliptic curves.
4.Explanatory example.
5.Part № 2.
(A) Non-modular curves of the first type.
(B) Non-modular elliptic curves of the second type.
6.Part № 3.

Secondary reduction forms of H.Poincare theory of numbers exactly solve Fermat's equation at all $\mathbf{n}>2$.
7.Part № 4.

Algorithm-proof Cojecture A.Beal.
8.Part № 5.

General consequence.
INTRODUCTION
It is common problem of theory numbers:

GENERAL THEOREM

It is 9 TYPS of positive whole numbers :
$N,(v>u),\left(a_{0}, b_{0}, c_{0}\right)$,
$\left(3 F_{a}^{\prime}, 3 F_{b}^{\prime}, 3 F_{c}^{\prime}\right),(A, B, C)$,
$\mathbf{(X , y}, \mathbf{z}),(\mathbf{p}, \mathbf{q}, \mathbf{r}), \mathbf{n},\left(\mathbf{X}^{*}, \mathbf{A}^{*}, \mathbf{B}^{*}\right)$
as equivalent of 9 secondary reduction forms of H.Poincare ,
at which have to natural basis for solutions of the following system equations :

NATURAL BASIS

$$
\left[\begin{array}{l}
\left(a_{1}^{\prime} \alpha_{1}^{\prime}+a_{2}^{\prime} \alpha_{2}^{\prime}+a_{3}^{\prime} \alpha_{3}^{\prime}\right) / 3 F_{a}^{\prime}=1 \\
\left(b_{1}^{\prime} \beta_{1}^{\prime}+b_{2}^{\prime} \beta_{2}^{\prime}+b_{3}^{\prime} \beta_{3}^{\prime}\right) / 3 F_{b}^{\prime}=1 \\
\left(c_{1}^{\prime} \gamma_{1}^{\prime}+c_{2}^{\prime} \gamma_{2}^{\prime}+c_{3}^{\prime} \gamma_{3}^{\prime}\right) / 3 F_{c}^{\prime}=1
\end{array}\right.
$$

$$
\mathbf{A}^{\mathrm{x}}+\mathbf{B}^{\mathbf{y}}=\mathbf{C}^{\mathbf{z}}
$$

$$
\begin{equation*}
\mathbf{A}^{\mathrm{p}} \mathbf{x}+\mathbf{B}^{\mathrm{q}} \mathbf{y}=\mathbf{C}^{\mathrm{r}} \mathbf{z} \tag{2}
\end{equation*}
$$

and
numbers \mathbf{A}^{*} in equations for non-modular elliptic curves

$$
\begin{align*}
\mathbf{Y}^{2}= & \left(\mathbf{X}^{*}-\mathbf{A}^{*}\right) \times \mathbf{X}^{*} \times\left(\mathbf{X}^{*}+\mathbf{B}^{*}\right) \tag{3}\\
& \text { WILL NOT DIVIDE INTO } / \mathrm{BY}
\end{align*}
$$

$$
\begin{gather*}
16=4 \times\left(b_{0}=2 v u\right)=4 \times\left(b_{0}=2 \times 2 \times 1\right) \tag{4}\\
(\text { here } v=2 \text { and } u=1) \\
\text { over }
\end{gather*}
$$

first condition of secondary reduction forms H.Poincare:

$$
\begin{equation*}
\mathbf{a}_{1}^{\prime} \alpha_{1}^{\prime}+\mathbf{a}_{2}^{\prime} \alpha_{2}^{\prime}+\mathbf{a}_{3}^{\prime} \alpha_{3}^{\prime}=1 \tag{5}
\end{equation*}
$$

in our case it is widened up to three corresponding conditions:

I offer to you attention a solution of this problems as problem of General theorem arithmetic,[1] :

Every natural number \mathbf{N} is either prime or can be uniquely factored as a product of primes in a unique way.

$$
\text { Primes } A=\{2,3,5,7,11,13,17,19,23,29, \ldots, 1081, \ldots .\}
$$

and as problem of Principle general (geometrical) co-variation, see [2].

Paradigm

«Here is not the best place to come to detailed philosophical or psychological analysis of mathematics. Any where l'd like to stress a few moments. Excessive underlining of axiomatic- deductive character of mathematics seems to be very dangerous. Of course, beginning of any constructive creative work (intuitive origin) is a source of our ideas and arguments, hardly keeps within simple philosophical formula; and anywhere just this origin is a genuine core of any mathematical discovery, even if it belongs to the most abstract spheres. If a
target is a clear deductive form, so the motive of mathematics is intuition and construction.», [1].
Being directed by this initial position of outstanding mathematician R. Curant I offer to readers attention a result of intuitive construction from which can follow
any axiomatic-deductive constructions. Intuitive -constructive origin is always very simple. Here is the beginning of such constructions:

PART № 1

Non-modular elliptic curves
It is natural numbers:
$\mathrm{N}=1,2,3,4,5,6,7, \ldots$.
the quantity of the variables numbers N is endless series.
If numbers $v>u$ are the numbers of various evenness taken
from endless series of natural numbers, then
IS UNITED SYSTEM NUMBERS:

1. The natural numbers \mathbf{N},
2. The primitive Pythagorean triplets

$$
\begin{aligned}
& a_{0}=v^{2}-u^{2} \\
& b_{0}=2 \mathbf{v u} \\
& c_{0}=\mathbf{v}^{2}+u^{2}
\end{aligned}
$$

3. The primitive Diophantine triplets
(8)
(9)

$$
D_{n}=\left(a_{0}{ }^{n-2}+b_{0}{ }^{n-2}+c_{0}{ }^{n-2}\right) / 3
$$

common multiplier as generalized proportionality coefficient

Comment

Triplets $\left(\mathbf{a}_{*}, \mathbf{b}_{*}, \mathbf{c}_{*}\right)$ is roots for equation of Fermat:

$$
\begin{equation*}
\mathbf{a}_{*}^{\mathbf{n}}+\mathbf{b}_{*}^{\mathbf{n}}=\mathbf{c}_{*}^{\mathbf{n}} \tag{10}
\end{equation*}
$$

THEOREM № 1

According of Principle general (geometrical) co-variation , [2], elliptic curve

$$
\mathbf{Y}^{2}=\mathbf{X}(\mathbf{X}-\mathbf{A})(\mathbf{X}+\mathbf{B})
$$

be of universal geometrical equivalent, see Fig.1:

Fig. 1
Here:
$\mathbf{L} 1=(X-A) ; L 2=X ; L 3=(X+B) ;$

If

$$
\begin{aligned}
& L 1=a^{n} \\
& L 2=b^{n} \\
& L 3=c^{n}
\end{aligned}
$$

then we have the following mathematical construction :

$$
\begin{equation*}
a^{n} \times b^{n} \times c^{n} \tag{13}
\end{equation*}
$$

and the following mathematical construction:

$$
\begin{equation*}
a^{2} \times b^{2} \times c^{2} \tag{14}
\end{equation*}
$$

as construction for equation of Pythagoras:

$$
\begin{equation*}
a^{2}+b^{2}=c^{2} \tag{15}
\end{equation*}
$$

It is concrete realization of Principle general (geometrical) co-variation.

THEOREM № 2

Equation of Diophant - Fermat:

$$
a^{n}+b^{n}=c^{n}
$$

is equivalent for equation Pythagoras, if $\mathrm{n}=2$:

$$
\mathbf{a}^{2}+\mathbf{b}^{2}=\mathbf{c}^{2}
$$

and for equation non-modular elliptic curve:

$$
\begin{equation*}
\mathbf{Y}^{2}=\left(\mathbf{X}^{*}-\mathbf{A}^{*}\right) \times \mathbf{X}^{*} \times\left(\mathbf{X}^{*}+\mathbf{B}^{*}\right) \tag{18}
\end{equation*}
$$

$$
\begin{aligned}
& a=a_{0}=\left(v^{2}-u^{2}\right) \\
& b=b_{0}=(2 v u) \\
& c=c_{0}=\left(v^{2}+u^{2}\right)
\end{aligned}
$$

is primitive Pythagorean triplets and
$\mathbf{v}>\mathbf{u}$
is numbers of various evenness taken from endless series of natural numbers.

Here numbers \mathbf{A}^{*}
WILL NOT DIVIDE INTO / BY

$$
\begin{equation*}
16=4 \times\left(b_{0}=2 v u\right)=4 \times\left(b_{0}=2 \times 2 \times 1\right) \tag{22}
\end{equation*}
$$

(here $v=2$ and $u=1$).
Only one thing can be deduced:
Hypothesis of Shimura-Thaniyama «All elliptic curve is modular curve» [3],
is a wrong hypothesis according
proof of A.Wiles [4] is a wrong proof .

C O N S E Q U E NCE № 1

Here all numbers is reciprocals primes:

$$
\begin{gathered}
\mathbf{Y}^{2}=\mathbf{a}_{0}^{2} \times \mathbf{b}_{0}^{2} \times{\mathbf{c}_{0}}^{2}= \\
=\left(\mathbf{X}^{*}-\mathbf{A}^{*}\right) \times \mathbf{X}^{*} \times\left(\mathbf{X}^{*}+\mathbf{B}^{*}\right)
\end{gathered}
$$

$$
\begin{equation*}
\mathbf{Y}=a_{0} \times b_{0} \times c_{0}= \tag{23}
\end{equation*}
$$

CONCEQUENCE № 2

According Fundamental theorem arithmetic this equality

$$
\begin{aligned}
& \mathbf{Y}^{\mathbf{n}}=\left(\mathbf{a}_{*} \times \mathbf{b}_{*} \times \mathbf{C}_{*}\right)^{\mathbf{n}}= \\
& \quad=\left(\mathbf{a}_{\mathbf{0}} \times \mathbf{b}_{0} \times \mathbf{C}_{\mathbf{0}}\right)^{\mathbf{n}} \\
& \text { contents all non-integer roots } \\
& \quad\left(\mathbf{a}_{*}^{\mathbf{n}}, \mathbf{b}_{*}^{\mathbf{n}}, \mathbf{C}_{*}^{\mathbf{n}}\right)
\end{aligned}
$$

for equations:

$$
\begin{align*}
& \mathbf{a}_{*}^{\mathbf{n}}+\mathbf{b}_{*}{ }^{\mathbf{n}}=\mathbf{c}_{*}^{\mathbf{n}} \tag{25}\\
& \mathbf{a}^{\mathbf{n}}+\mathbf{b}^{\mathbf{n}}=\mathbf{c}^{\mathbf{n}} \tag{26}
\end{align*}
$$

Here:

$$
\begin{aligned}
& \mathbf{a}=\mathbf{a}_{*} \times \mathbf{S} \\
& \mathbf{b}=\mathbf{b}_{*} \times S
\end{aligned}
$$

$$
\begin{equation*}
\mathbf{c}=\mathbf{c}_{*} \times \mathbf{S} \tag{27}
\end{equation*}
$$

and S common multiplier.

EXPLANATORYEXAMPLE
(28)
(29)

$$
\begin{aligned}
& Y^{2}=a_{0}{ }^{2} \times b_{0}{ }^{2} \times{c_{0}}^{2}= \\
& =144 \times 1225 \times 1369= \\
& =241491600
\end{aligned}
$$

$$
\begin{equation*}
Y=a_{0} \times b_{0} \times c_{0}=15540 \tag{30}
\end{equation*}
$$

$$
\begin{gather*}
\mathrm{B}^{*}=1369-\mathrm{X}^{*}= \\
=1369-1225= \\
=\mathrm{a}_{0}{ }^{2}=\left(\mathrm{v}^{2}-\mathrm{u}^{2}\right)^{2}=144 \tag{32}
\end{gather*}
$$

$$
\begin{equation*}
Y=a_{0} \times b_{0} \times c_{0}=15540 \tag{33}
\end{equation*}
$$

$$
\begin{aligned}
& \left(X^{*}-A^{*}\right)=a_{0}{ }^{2}=144 \\
& X^{*}=b_{0}{ }^{2}=1225 \\
& \left(X^{*}+B^{*}\right)=c_{0}{ }^{2}=1369
\end{aligned}
$$

(36)

$$
\begin{gather*}
\text { Here number } \mathbf{A}^{*} \tag{35}\\
16=4 \times\left(\mathbf{b}_{0}=2 \mathrm{VILL}\right)=4 \times\left(\mathbf{b}_{0}=2 \times 2 \times 1\right) \\
(\text { here } \mathrm{v}=\mathbf{2} \text { and } \mathrm{u}=1)
\end{gather*}
$$

$=1225-144=1081$

CONSEQUENCE № 3

From which follows the calculated form for endless ensemble of primes numbers:

$$
\mathbf{A}=\left(\mathbf{b}_{0}^{2}-\mathbf{a}_{0}^{2}\right)
$$

NOTE
To an infinite REGULAR line of natural numbers:

$$
\mathbf{N}=1,2,3,4,5,6,7
$$

corresponds an infinite REGULAR line of simple numbers:
Every natural number \mathbf{N} is either prime or can be uniquely factored as a product of primes in a unique way.

$$
\text { Primes }=\{2,3,5,7,11,13,17,19,23,29, \ldots, 1081, \ldots .\}
$$

calculated with the help of the my formula .
Preservation of an attribute of the REGULARITY is provided with a regularity of assignment of pairs numbers:

$$
\mathbf{v}=\mathbf{u}+\mathbf{1}
$$

which structure includes only EVEN NUMBERS \mathbf{V}.
Infringement of this condition can break in some cases the basic property of the my formula - formation of infinite lines of simple numbers.

